Concomitant Oxygen-18 Enrichment in Commercial Carbon-13 Labelled Urea

Katsumi Iida, Takeshi Chiyoda and Masahiro Kajiwara*

Department of Medicinal Chemistry, Meiji College of Pharmacy, 1-22-1 Yato-cho, Tanashi-shi, Tokyo 188, Japan

Summary

By mass spectroscopy, 50-fold oxygen-18 enrichment over natural abundance was observed in commercial ${}^{13}C$ -urea (99 atom % ${}^{13}C$) synthesized from ${}^{13}C$ -carbon monoxide that had been ${}^{13}C$ -enriched by cryogenic distillation. In contrast, ${}^{13}C$ -urea synthesized from ${}^{13}C$ -potassium cyanide (a ${}^{13}C$ -labelled compound having no oxygen atom) showed the natural abundance level of oxygen-18.

Key words: carbon-13 enrichment, oxgen-18 enrichment, cryogenic distillation, mass spectroscopy, ¹³C-urea.

Introduction

Compounds labelled with stable isotopes are widely used, for example, in biosynthetic studies¹). Further, a ¹³C-urea breath test is used for noninvasive clinical diagnosis of *Helicobacter pylori* infection, which is involved in the pathogenesis of gastritis and gastric ulcers. Carbon-13 labelled compounds are commercially synthesized from ¹³C-carbon monoxide enriched in carbon-13 by cryogenic distillation, the only commercial carbon-13 enrichment method currently available. This enrichment method separates ¹³C-carbon monoxide and ¹²C-carbon monoxide based on the difference of their saturated vapor pressure. Such a procedure should also afford enrichment of oxygen-18, whose natural abundance is 0.20 %, but no

CCC 0362-4803/96/121133-06 ©1996 by John Wiley & Sons, Ltd. report has yet appeared on this point. Since the oxygen-18 isotope effect could be significant in scientific and clinical applications, we examined the degree of oxygen-18 enrichment in 13 C-urea from several commercial sources.

Results and Discussion

The theoretical ratios of isotope abundance for urea are 1.96 % at $(M^{+}+1)$ and 0.21 % at $(M^{+}+2)$. The M⁺+1 value is influenced by the isotope abundances of all the atoms in urea, one carbon, four hydrogens, one oxygen, and two nitrogen atoms. However, the M⁺+2 value is influenced only by the isotope abundance of the one oxygen atom. That is, the theoretical ratio (0.21 %) of M⁺+2 value of urea is in good agreement with the natural oxygen-18 abundance (0.20 %). Therefore, the measured M⁺+2 value of urea directly reflects its degree of oxygen-18 enrichment. Eight samples of urea of different grades, manufactured by three companies, were examined by mass (MS) spectroscopy. The results (figure 1 and table 1) were in agreement with the theoretical isotope abundance, and the M⁺+2 values were close to

Urea 📉 m/z		60	61	62
ICN		100	1.84	0.20
Junsei		100	1.90	0.20
Wako	1)	100	1.82	0.20
	2)	100	1.94	0.20
	3)	100	1.89	0.20
	4)	100	1.92	0.22
	5)	100	1.94	0.22
	6)	100	1.86	0.20

Table 1; Relative Intensity of Peaks in the Mass Spectra ofUnlabelled Commercial Ureas

Figure 1; Mass Spectra of a); Urea Supplied by Wako P. C. I., Ltd., b); ¹³C-Urea Synthesized from ¹³C-Potassium Cyanide, c); ¹³C-Urea Supplied by CIL Inc., d); ¹³C-Urea Supplied by Masstrace Inc..

the natural abundance value. Next, ${}^{13}C$ -urea was synthesized (scheme 1) from ${}^{13}C$ -potassium cyanide (99 atom % ${}^{13}C$), which contains no oxygen, in high yield by a modification of the method of Haley and Lambooy²). As shown in figure 1 and table 2, the peak at m/z 60 with a relative intensity of 1.11 % reflects the existence ratio of urea (${}^{12}C$) in this synthesized ${}^{13}C$ -urea. The peak with a relative intensity of 0.21 % at m/z 63 (M⁺+2 for ${}^{13}C$ -urea) reflects the oxygen-18 enrichment of ${}^{13}C$ -urea. The abundance of oxygen-18 in this synthesized ${}^{13}C$ -urea was equal to the natural abundance. However, among commercial ${}^{13}C$ -ureas (99 atom % ${}^{13}C$), which were synthesized from

Scheme 1; Synthesis of ¹³C-Urea from ¹³C-Potassium Cyanide

Table 2; Relative	Intensity	of Peaks	in the	Mass	Spectra	of Synthetic
and Commercial ¹¹	³ C-Ureas					

¹³C-Urea ∖ m/z		60	61	62	63
Synthesis from K ¹³ CN		1.11	100	1.65	0.21
CIL		0.22	100	1.94	2.45
Masstrace	1)	0.75	100	1.68	11.66
	2)	0.51	100	1.40	11.95
Shoko	1)	0.58	100	1.40	11.87
	2)	0.89	100	1.59	10.95

¹³C-carbon monoxide enriched in carbon-13 by cryogenic distillation, CIL's ¹³C-urea showed a relative intensity of 2.45 % at M⁺+2, more than ten times the natural abundance. Furthermore, ¹³C-ureas from Masstrace and Shoko showed relative intensities of 10.95~11.95 %, implying up to 50-fold enrichment of oxygen-18 over the natural abundance value. Clearly, commercial carbon-13 enrichment by cryogenic distillation involves the concomitant enrichment of oxygen-18.

Experimental Materials

Ureas were supplied by ICN Pharm. Inc. (purity; ≥ 99 %), Junsei Chem. Co., Ltd (purity; 99 %) and Wako P. C. I., Ltd. (purity; 99 %). ¹³C-Ureas (99 atom % ¹³C) were supplied by CIL Inc., Masstrace, Inc. and Shoko Co., Ltd.. ¹³C-Potassium cyanide (99 atom % ¹³C) was supplied by Isotec, Inc..

Instruments

Melting point determinations were carried out on a Yanaco micro melting point apparatus (Model MP); values are uncorrected. IR spectra were recorded on a JASCO VALOR-III FT-IR spectrometer. ¹H- and ¹³C-NMR spectra were recorded on a JEOL GSX-400 (¹H: 400 MHz and ¹³C: 100 MHz) spectrometer. EI-MS spectra were obtained on a Fisons Instrument VG Analytical AutoSpec spectrometer with a DEC VAX-4000 Model 60 data system. The ionizing voltage was set at 70 eV and the acceleration voltage was set at 8 kV.

Synthesis of ¹³C-Urea from ¹³C-Potassium Cyanide

A solution of potassium permanganate (2.1 g, 13.29 mmol) in water (50 ml) was added dropwise to 13 C-potassium cyanide (1.0 g, 15.12 mmol) and copper hydroxide (0.6 g, 6.15 mmol) at 0 °C for 10 min, and the whole was stirred for 5 min at 50 °C. The reaction was quenched with 10 % hydrogen peroxide (15 ml) at 0 °C, and the mixture was filtered. The filtrate was neutralized with 0.5 N sulfuric acid, then freeze-dried. Ammonium sulfate

(2.2 g, 16.65 mmol) was added to a solution of the residue in water (10 ml) and ammonium hydroxide (20 ml), and the reaction mixture was stirred for 4 hr at 70 °C, then freeze-dried. The crude ¹³C-urea was extracted with hot ethyl alcohol, and the solution was evaporated. Recrystallization from ethyl alcohol gave ¹³C-urea (804 mg, 87 %), m.p. 114~120°C; ¹H-NMR (D₂O) δ : 5.72 (NH₂); ¹³C-NMR (D₂O) δ : 165.2 (¹³CO); FT-IR (KBr) cm⁻¹: 1667 (¹³CO); EI-MS *m/z* (rel. int. %): 61 (M⁺, 100), 41 (53).

Acknowledgment

We wish to thank Miss Mie Wakana for the EI-MS spectroscopy.

References

- Kurumaya K., Kajiwara M., Abei T., Hirano S. and Kokubun N. -Chem. Pharm. Bull. <u>36</u>: 2679 (1988), Kurumaya K., Okazaki T., Seido N., Akasaka Y., Kawajiri Y., Kajiwara M. and Kondo M. -J. Labelled Comp. Radiopharm. <u>27</u>: 217 (1989), Okazaki T., Kurumaya K. and Kajiwara M. -Chem. Pharm. Bull. <u>38</u>: 1727 (1990), Iida K. and Kajiwara M. -J. Labelled Comp. Radiopharm. <u>29</u>: 201 (1991), Kajiwara M., Hara K., Mizutani M. and Kondo M. -Chem. Pharm. Bull. <u>40</u>: 3321 (1992), Kajiwara M., Okazaki T., Iida K., Narumi S., Hirose M., Ijichi M., Abei T., Hirano S. and Iinuma M. -Chem. Pharm. Bull. <u>44</u>: 1258 (1996)
- 2) Haley E. E. and Lambooy J. P. -J. Am. Chem. Soc. <u>76</u>: 2926 (1954)